Continuous Extension of Order-Preserving Homogeneous Maps
نویسندگان
چکیده
منابع مشابه
Continuous extension of order-preserving homogeneous maps
Maps / defined on the interior of the standard non-negative cone K in R. which are both homogeneous of degree 1 and order-preserving arise naturally in the study of certain classes of Discrete Event Systems. Such maps are non-expanding in Thompson's part metric and continuous on the interior of the cone. It follows from more general results presented here that all such maps have a homogeneous o...
متن کاملExtension of order-preserving maps on a cone
We examine the problem of extending, in a natural way, order-preserving maps that are de ̄ned on the interior of a closed cone K1 (taking values in another closed cone K2 ) to the whole of K1 . We give conditions, in considerable generality (for cones in both ̄niteand in ̄nite-dimensional spaces), under which a natural extension exists and is continuous. We also give weaker conditions under which ...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملOn strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملSpectrum Preserving Linear Maps Between Banach Algebras
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2001
ISSN: 1474-6670
DOI: 10.1016/s1474-6670(17)39105-x